
NuMI-Note-FD_DOCS-1047

Alignment of the MINOS FD
B. Becker and D. Boehnlein

November 5, 2004

The results and procedure of the alignment of the MINOS Far Detector are presented. The far
detector has independent alignments of SM1 and SM2. The misalignments have an estimated
uncertainty of ~ 850 :m for SM1 and ~750 :m for SM2. The alignment has as inputs the
average rotations of U and V as determined by optical survey and strip positions within modules
measured from the module mapper. The output of this is a module-module correction for
transverse mis-alignments. These results were verified by examining an independent set of data.
These alignment constants on average contribute much less then 1 % to the total uncertainty in
the transverse strip position.

Introduction
The alignment of the MINOS Far Detector has been considered before for SM1 in terms of a
plane-plane alignment and a module by module alignment . These previous studies were used1 2

only for study of the alignment algorithm and procedure and not used to actually align the
detector. The alignment of SM2 has never before been considered.

This note contains results from initial alignment of SM1 and a newer alignment of the entire FD.
This contains both a detailed account of the procedure and the actual results. In addition, an
estimate of both the resource requirements and justification of a more complex alignment
procedure for future work are considered.

Initial alignment of SuperModule 1
 In June 2003, an alignment for SM1 was carried out. The alignment used the nominal positions
of the scintillator in the module (no strip-strip corrections) and used an estimate of average
rotations in the U and V view . These values of the average rotation in the U and V view for3

SM1 are in UgliDbiScintPln in the 200007nnn series of SEQNO. The data that was used for this
was the ‘alignment data’ that was taken in the summer of 2002 before the magnetic field was
turned on. The alignment data was broken up into separate data sets. A set was used to generate
the alignment constants and a separate set used to ‘verify’ the constants. Each of these data runs
was processed on the FNAL cluster using R0.18.0. The alignment used SR track reconstruction
for tracking and the alignment package for the actual alignment . The alignment to generate the2

constants used 2 iterations and the verification used just the ‘zeroeth’ (no) iteration. The results
are shown in figure 1 and figure 2. During the time between the first and second run the z-pitch
model of the detector changed slightly, although, the alignment clearly worked. The runs used
during this alignment are listed in Table 1.

Pass Runs

Generation 5969,5994,6002,6011,6033,6079,6109,6122

Verification 5966.5991,6008,6017,6030,6077,6105,6107,6120

Table 1: This shows the runs used for both the generation and verification phase of alignment.

The results of this first alignment are presented in table 2. Pass here refers to pass 1 (generation)
or pass 2 (verification). The number presented here are the numbers off the gaussian fits done in
figure 1 and figure 2.

SM1 Number View Iteration Mean (mm) Sigma (mm)

1 U 1 -0.07±0.12 3.20±0.13

1 V 1 -0.06±0.13 3.79±0.13

1 U 2 -0.08±0.05 1.78±0.06

1 V 2 -0.05±0.05 1.85±0.05

Table 2: This shows the same results that are shown in figure 1 and figure 2. The mean is
consistent with zero, although it is always negative. The sigma value improved from pass 1 to
pass 2.

The results in table 1 suggest that the alignment of modules after alignment for this pass was
about 1.8 mm. These constants were placed in the database in June 2003. The alignment
constants were put in the UgliDbiScintMdl table in 200006nnn series SEQNO. These constants
are only for SM1. The modified UgliDbiScintMdl and UgliDbiScintPln tables were used for the
R1.0.0a batch processing of far detector data.

Improved alignment
After the completion of the first alignment described above, it was realized that a new and
improved alignment would have to be done. Besides aligning SM2 it was also realized that it
was possible to attempt to generate an improved alignment for SM1.

Improved alignment: Geometry overview for alignment
Three database tables are of particular relevance for alignment, UgliDbiStrip, UgliDbiScintPln
and UgliDbiScintMdl. UgliDbiStrip contains information of the strip position within a given
module. UgliDbiScintPln has information relevant to an entire scintillator plane, in particular it
contains information about the rotation of the plane. UgliDbiScintMdl holds information about
the modules relative position on the scintillator plane. Many other database tables are relevant
for reconstruction, however, these three tables are the only three tables the alignment process
modifies, so they will be examined in detail. Every scintillator plane is made up of modules and
every module consists of strips. This means that rotations in UgliDbiScintPln are applied to
every module and every strip in that plane. In the same way, when a module has a transverse

offset, every strip in the given module also has a transverse offset.

Improved alignment: UgliDbiStrip
 In the first alignment the nominal strip positions (inside a module) were used. However, the
module mapper provided an improved estimate of strip position inside a module. The module
mapper data was used to estimate the transverse strip position by averaging over the entire
length of the strip (both leading and trailing edges). The new strip positions were estimated by
taking data from the module mapper database (processed by Leon Mualem) and using the data to
determine the position of all strips in a module relative to the first strip in module, which is
assumed to be in the correct position . Even if the first strip is not in the correct position this is
not a problem as it is only an absolute offset to the position of all the strips in that module and
should be corrected by the module to module alignment.

However, this method of correcting for strip to strip variations has several problems. Some
modules did not have reliable positions data available (this was not the mapper purpose), these
modules were filled in with nominal positions. Some modules had single strips that were clearly
unphysical because of some problem with the mapper. An unphysical strip position is defined as
a 1mm difference between the measure position and estimated position of that strip based off the
linear fit for that particular module. These strips were replaced by using a linear fit to fit all
strips in the particular module and then replace the strip position with the extrapolated position
from the linear fit. However, these problems were rare ~ 1% level. The strip-strip correction
attempted to make no correction for strip-strip rotation inside a module, however, there was no
evidence of this in the data . The overall precision of the strip transverse position from the4

module mapper was estimated to be better then 1 mm (~few 0.1 mm). Figure 3 shows the
difference between the measured and nominal slope (41.1 mm/strip) for a linear fit of strip
versus transverse offset. The plot shows almost the total data set in addition to modules used in
the vetoshield. The linear fits are done after the bad strip positions are cut and replaced. Figure 3
shows that for the most part the modules are very close to the nominal width. However, some
tend to be slightly wider, while other modules are slightly more narrow. In particular figure 3
shows that the mean difference from nominal slope is 50 mm/strip and the RMS of the
distribution is 100 mm/strip. The cause of this variation and of the distribution shape has not
been studied and is outside the scope of this note. The resulting tables were placed in
UgliDbiStrip database table with SEQNO from the 200011nnn series.

Improved alignment: UgliDbiScintPln
The rotations for the improved alignment were handled in the same way they were in first
alignment. An average rotations measured from optical survey are used for the U and V planes.
The only difference is the rotation now includes rotations for SM2. This means no attempt to
correct for module rotation within a plane or rotation within a module are done. The rotation
values used for this alignment are stored in UgliDbiScintPln with SEQNO in the 200011nnn
series.

Improved alignment: UgliDbiScintMdl
The module by module alignment explained in this note, is accomplished by moving the module
in the transverse position. This is the information stored in the UgliDbiScintMdl table. This is

the only table which values changes after alignment. The final alignment values are in
UgliDbiScintPln database with SEQNO 200012nnn. The series of SEQNO 200011nnn is based
off code with an error and should never be used.

Improved alignment: Overview
The alignment was carried out with the idea that verification is very important. Verification here
means that the alignment should show evidences that the alignment worked when the alignment
is applied to an independent set of data. To do this, the alignment data sets were broken into two
parts. The alignment data set was taken before the magnet was turned in a given SM. For SM1
this was from the summer of 2002 and for SM2 this was from the summer of 2003 (the
particular files are listed in Run and Data Selection). The first part of the data set is used to
generate the new alignment constants. Each iteration runs on the data from this data set. The
second part of the data is the verification data set. This data set is not used until the final
verification run. Each of the two data sets have approximately the same amount of data. The
data sets were split up by alternating which run goes into which data set, this was done to try and
limit any effect that drifted over the several days the data was taken. Even though this system
reduces the statistical power of the alignment, it gives more confidence that the alignment
results observed are robust.

Improved alignment: Procedure
The detailed procedure for alignment is given in Appendix A.

Improved alignment: Run and Data selection
The runs selected for the improved alignment are given in table 3.

Detector Pass Run Number

SM1 Generation 5966,5972,5991,6008,6011,6017,6020,6030,6033,6077,6079,6105,
6107,6120

SM1 Verification 5963,5980,6005,6014,6027,6036,6081,6118,5969,5994,6002,6109,
6497

SM2 Generation 16561,16557,16549,16545,16541,16533,16529,16525,16517,
16513,16509,16501,16497,16493,16485,16481,16477,16588,
16597,16601,16605,16613

SM2 Verification 16563,16559,16555,16547,16543,16539,16531,16527,16523,
16515,16511,16507,16495,16491,16483,16479,16475,16595,
16599,16603,16611

Table 3: This shows which runs were used for the generation and verification of the improved
alignment for both SM1 and SM2.

Data Selection: Not all the data in these runs were selected. Only hits that were either in SM1 or
SM2 were reconstructed (depending on which SM was being aligned). All tracks used for
alignment had to be 20 or more tracklike planes long. Only single track events were considered.

To eliminate tracks that underwent a hard scatter, a requirement that direction cosine determined
from the vertex must agree with the direction cosine determined over the entire track to 1.5
milliradian in the x, y and z direction was imposed.

Improved alignment: Results
The results of the alignment are presented in table 4 and in figures 4-21. The results in table 4
are a summary of the alignment.

SM Number View Iteration (pass) Mean (mm) Sigma (mm)

 1 U 0 0.256±0.104 2.565±0.141

1 V 0 0.025±0.132 3.142±0.177

2 U 0 0.209±0.112 2.663±0.176

2 V 0 -0.141±0.126 2.993±0.178

1 U 1 0.009±0.029 0.783±0.027

1 V 1 -0.027±0.027 0.832±0.027

2 U 1 0.000±0.027 0.737±0.033

2 V 1 -0.005±0.025 0.705±0.026

1 U 2 -0.033±0.017 0.469±0.015

1 V 2 0.016±0.016 0.431±0.014

2 U 2 -0.023±0.013 0.364±0.014

2 V 2 -0.024±0.012 0.345±0.013

1 U Verification -0.026±0.030 0.859±0.029

1 V Verification 0.016±0.029 0.827±0.024

2 U Verification 0.013±0.026 0.755±0.024

2 V Verification -0.037±0.027 0.765±0.024

Table 4: This shows a summary of the alignment. The data shown are the results of guassian fits
done on the data shown in figure 4 to figure 11. All of the means are consistent with zero which
is what you expect for random errors. The lower sigma values on the aligned data (Iteration 1,2
and verification) is evidence that the alignment worked. The two views agree well for a given
SM and given iteration. The verification iteration suggests that the misalignment in SM1 is
about ~ 850 mm and about ~ 750 mm in SM2.

Histogram Explanation and analysis:

There are two types of histograms shown in the results section. There are the type of histograms
shown in figure 4-11. These histograms show the mean residual of all U/V plane modules in
either SM1/SM2. A gaussian fit is done to the distribution in order to quantify the quality of the
alignment. All of the distributions have tails, but for the most part the gaussian model seems to
fit the data well. The values in table 2 and table 4 are the results of the parameters determined
from the gaussian fit. The histograms in figure 12-21 show the exact same data as the histograms
in figure 4-11. The only difference is these figures use a color code to show the information. The
histogram at the top of each figure is the mean residual for all (Not just U view) modules in
SM1/SM2 as a function of plane number versus module number (position). The color scale is set
to ±15 mm for most histograms. The verification is shown both at ±15 mm and ±3 mm. The
bottom histogram in each figure is the RMS value of the residuals as a function of plane number
and module number. In these figures the RMS is much smaller then the mean. The fact that
residual and RMS distribution get worse at the edges involves poor acceptances in these sections
of the detector.

Improved alignment: Secondary verification
A possible secondary way to verify the alignment is to use part of the magnet on data set.
Although this is independent data set with a much larger sample of data, it is not clear that this is
the right thing to do. At the time of this study the magnetic field has not undergone final
calibration, this could in principle introduce bias that might be very difficult to understand. On
the other hand, the data with a magnet on is what the vast majority of the analyses will use. The
data used for analysis was runs 25499,25502,25508,25511,25514,25517,15520,25523 (all sub-
run 3) processed with R1.7. These 8 runs were ran with three different set of alignment
constants. First these were run on the ‘Nominal’ geometry, before alignment. Second they were
run using the constants produced from the first iteration of alignment. Thirdly, they were run
using the alignment constants from the second pass. Several quantities were examined with
these with these three runs. The reduced c distribution is shown for all tracks, short tracks (<=2

20 tracklike planes), long tracks are shown in figure 22-24. Figure 25 shows a profile histogram
of reduced c versus number of tracklike planes. All the figures have the same format, SM1 is on2

the left side, SM2 is on the right side. The top plot is the nominal geometry, the middle plot is
based off the first iteration and the bottom plot is based off the second iteration. The middle plot
has less data because run 25499 was not used because of technical issues. However, the shape of
these distributions are very similar so cannot change the overall result. The first thing that is
observed is that each step of alignment improves the c distribution, both the mean and width2

decrease. This is strong independent evidence the alignment worked. The c distribution is still2

not fully understood, the short events have an unusually small value. There is small difference
between SM1 and SM2. However, it is unclear that the difference can be explained by the c2

distribution alone. The longer the track, the higher average c . The cause of this is not fully2

understood, one possible suggestion is multiple scattering, although there is no independent
evidence for this. This is a topic for future study.

Alignment and additional iteration
The alignment only used two iterations. The use of more iterations was considered but it was not
used. The reason is that the alignment was already very good. Since the verification is consistent
with the first pass and not the second pass, any improvement from a third or higher iteration

would seem to be non-physical. This also suggests that the alignment is limited by systematic
and not statistics uncertainty. Given the way rotations are modeled, this is not a surprise.

Acceptance of tracks used for alignment
Figure 26 and figure 27 show the number of tracks per module and tracks per strips used in the
alignment for SM1 and SM2 (U and V view just not U view). The tracks per strip show that the
detector acceptance drops off at the corners and the front and back of the detectors. The plots are
from iteration zero of SM1 and SM2.

Improved alignment: Conclusions and Open Questions
The alignment of the FD was successful. The detector alignment was improvement in a
verifiable manner and the final results suggest that misalignments are known to ~ 850 mm for
SM1 and ~ 750 mm for SM2 . The results might be systematically limited with the current set of
assumptions. A way to get around this limitation would be a true strip-strip alignment, however,
that is very large undertaking for very small gains (See Appendix B and C).

Conclusions
The alignment of the MINOS FD was a success. The post verification estimates of
misalignments in SM1 ~ 850 mm and SM2 ~ 750 mm are improved over the nominal values in
the database. However, there are some lingering questions which future studies should consider
addressing. First, there is the question of whether SM1 and SM2 are systematically limited?
Secondly, there is the question of what improvements (if any) can be made. Since there is not
enough data in the alignment data set (even without splitting the data set in two) to do a magnet
off ‘true’ strip-strip alignment, a possibility is to do a magnet on strip-strip alignment. This is in
principle possible, if very straight tracks are chosen. How well this works in reality remains to be
seen. One possible approach is a much more complex alignment, which has rotation of strips
(modules) in addition to transverse offsets of strips (modules) as an additional degree of
freedom. This is in principle the correct way to do things. However, given the much larger data
set that would have to be processed (this is not trivial), this would also require a change to the
data model used for the alignment. Given the small amount the current misalignment, efforts
might be better spent on other reconstruction related tasks.

Acknowledgments:
This alignment could not have been possible without input and help from many MINOS
collaborators. In particular the efforts of Brett Viren, Leon Mualem, Robert Hatcher, Nick West,
Jim Musser, Jon Urheim, Julia Thompson, Jeff Nelson and Wes Smart.

Endnotes:

1. NuMI-Note-856
2. NuMI-Note-876
3. NuMI-Note-913

4. Private communication L. Mualem

Appendices

Appendix A: Detailed procedure for alignment
The procedure for alignment will be broken down into the following stages:

1) The first part of alignment is event reconstruction. This was done using R1.7 on the FNAL
cluster. The reconstruction was done using the alignTracker.C script (see Appendix D). There
was a separate script for SM1 and SM2. The scripts only differed in regard to whether they
reconstructed tracks in SM1 or SM2. Both scripts assumed no magnetic field for tracking. The
first run was on generation data. Table 3 has a list of all data used in the improved alignment.
The UgliDbiScintMdl table was set back to the nominal values for both SM1 and SM2 to try and
make the starting point as similar as possible. This generates two files, a candidate and ntuple
file.

2) The candidate and ntuple files are used as an input to align.C in order to carry out the actual
alignment. The alignment algorithm (described in NuMI-NOTE-876) is carried out on members
of CandTrackFitList that pass the data selection cuts. This is done by cutting on the ntuple file
and only selecting on candidate events from the corresponding run and snarl that pass the
requirement. The align.C is run on all files in a given iteration. The database must be rolled back
to the most recent constants. This is important as the alignment algorithm should be run over all
the data in a given iteration. The result of align.C is a root file (SM1PassOne.root for example).
This root file has all the important information in a given alignment (mean residual and number
of tracks per iteration for example) as a function of iteration. Iteration in this context does not
mean the same thing as iteration means in the rest of this document. The alignment algorithm
allows for iteration. However, at each step of the iteration, the tracks are not reconstructed. It is
simply assumed that shifting the tracks a small amount does not change the track. It should be
pointed out that although this seems to be a perfectly reasonable statement, it is not necessarily
true, as hits near the edge of two strips carries ‘extra information’ compared to one which
crosses at the center of a strip. This ‘extra information’ is location of the strip boundary and
therefore the strip and because we know where the strip is within a module, the location of the
module. But if the assumption that a small shift does not change the track fails, it fails this
situation. It was decided to do the ‘iteration by hand’. This means that only iteration zero is used
for alignment.

3) The zero iteration is extracted from the root file (SM1PassOne.root for example) by using the
GetInfo.C macro (see Appendix D). The extraction is simply a text dump. These constants then
are added to the nominal (UgliDbiScintMdl6nnn series) values in the UgliDbiScintMdl table.
This table and the modified UgliDbiStrip and modified UgliDbiScintPln tables are in a
development release. The run script must be told to first go to this development database and
then go to the normal offline database with all the other tables.

4) The next iteration is ran. The only difference change to any script involves the rollback
feature. The rollback must be changed so it will read in the new modified UgliDbiScintMdl table

corrected for the previous iteration. Only three iterations were ran in the actual alignment
although this could be different in a future alignment.

5) Each iteration works in the exact same way as the zero iteration (as explained in steps 1-4).
Run the jobs, find the new corrections, modify the development version of UgliDbiScintMdl.
Repeat.

6) After the alignment either stops improving or is so small no improvements are deemed
necessary, the validation iteration must be ran. The problem is a set of UgliDbiScintMdl
SEQNO from a particular iteration must be chosen to validate. Then the validation data set is ran
with the UgliDbiScintMdl set to run on the data with rollback date to run on the validated data,

7) After the validation run is complete, the validation either works (the alignment is consistent
with the improvements to the mean residual distribution expected from generation stage) or it
does not. If it works the new database tables are made ready for distribution to the collaboration.
If the validation fails, the process could very well have to start from the beginning with some
improvement/modification.

Appendix B: Misalignment effect on strip uncertainty

The uncertainty in the position of the strip of width s that has a misalignment error m and
physical strip width of w can be represented as:

where given the fact the strip are uniform width w

Ignoring the additional terms (which are not zero) and using the binomial theorem you can write:

wGiven the fact that the strip width is about 40 mm, this gives a s = 11.6 mm. Also given the fact
the misalignments are 2 mm or less the binomial approximation is valid. For SM2 this suggests
that a ~ 750 mm misalignment contributes only about 0.2 % to the total strip uncertainty, while
for SM1 the contribution is slightly higher. Thus reducing the misalignments to for example 500

mm, does not effectively reduce the total strip uncertainty which is the important physical
quantity.

Appendix C: Estimate of number of events needed to carry out strip-strip alignment
An estimate of the number of events (and live time) needed to do a strip-strip alignment are
presented. First the back of the envelope calculation:

The MINOS FD has 484 plane with 192 strips per plane or 92,928 strips. The rate of cosmic ray
muons is about 0.5 Hz. Suppose that every muon is straight (this is in a magnetic field on data)
and that all triggered muons are used for alignment with conditions similar to those used for the
actual alignment (20+ planes for simplicity). For purposes of this calculation let the average
plane length be 30 planes and assume that every plane has only one hit. Furthermore assume that
the detector has 100 % on time. The final (and not that realistic) assumption is that the
acceptance is such that every strip is hit at the same rate. With these numbers you expect every
strip is hit about 13.9 times a day. This number seems very positive. The alignment resolution is
~ (11.6/sqrt(N)) mm where N is the number of tracks per strip. Thus to get a 2 mm alignment
resolution takes only ~ 2.5 days of data and to get 800 mm takes ~ 16 days. If you want to verify
this data (which is probably a good idea), you still need only ~32 days of data to equal SM1
alignment over the entire detector.

This number seems like an encouraging number, however, this back of the envelope calculation
is an underestimate. The most serious flaw in the calculation above is that every strip is the
same. This is not true. The problem is that the acceptance of the detector is different at the
edges of the detector. This is an advantage of module-module alignment, in that some of these
variations are averaged out (although you can still clearly see the effects in module-module
alignment). For example when looking at ~ 50 hours of data (magnet off), strips at the edge of
the detector had order of a couple (~5 hits). In order to do a strip-strip alignment to 1 mm would
need something like 60 days (1440 live hours) of data without verification. This data would have
to be processed with special runs using the initial nominal geometry. This would be a very
computationally intensive process. All of this is done assuming the same cuts are applied to
magnet off data will get the same results for the magnet on data. With verification this is 4
months of data. The result would be an alignment comparable to the current one. Given these
estimates, it seems that this is just not possible.

Appendix D: Module by Module alignment with magnet on data
The idea of using ‘magnet on’ data to do a module-module alignment is more plausible then a
strip-strip alignment, however, it is probably not trivial. If a magnet on module-module
alignment was attempted, two issues would have to be addressed. Firstly, how much (if any?)
would the current data quality cuts would have to be changed to assure the long and straight
tracks which are needed for alignment. Second (depending on the first), how much computing
power is needed to make an improvement. This is less then a strip-strip alignment but still might
take a good deal effort. However, this is probably worth future study.

Appendix E: List of macros used for alignment

All of the macros here are listed at the end of the document.

AlignTrackerSM1.C: This just a slightly modified version of a standard macro to run a
reconstruction job.

Run with: loon -bq AlignTrackerSM1.C filename.root

align.C: This is an alignment script. It is inputs are a candidate file and ntuple file. It outputs a
file with alignment information (“AlignmentOutput.root”).

Run with: loon -bq ‘align.C(“AlignmentOutput.root”)’ cand1.root cand2.root

GetInfo.C: This is used to extract alignment constants from align.C file

Run with: root GetInfo.C

Figure 1: This shows the distribution of module offsets for SM1 for the first alignment. Each
histogram point is a single module. This is before any alignment correction has been applied.

Figure 2: This shows the distribution of module offsets for SM1 in the first alignment. Each
histogram point is a single module. Notice how this distribution appears to be much tighter then
the same distributions in figure 1. This is evidence that the alignment worked.

Figure 3: This shows the difference between the average slope of a linear fit to all strip positions
in a module and the strips nominal spacing (41.1 mm/strip). This plot includes veto shield
modules and is missing a small fraction of the data. This is the result after bad single strips were
removed (1mm difference with linear fit for module). This shows that the strips are very close
to the nominal value.

Figure 4: This shows the distribution of module offsets for SM1 after iteration zero. Each
histogram point is a single module. This is before any alignment correction has been made.

Figure 5: This shows the distribution of module offsets for SM1 after iteration one. Each
histogram point is a single module. Notice how this distribution appears to be much tighter then
the same distributions in figure 4. This is evidence that the alignment worked.

Figure 6: This shows the distribution of module offsets for SM1 after two iterations. Each
histogram point is a single module.

Figure 7: This shows the distribution of module offsets for SM1 after verification. Each
histogram point is a single module.

Figure 8: This shows the distribution of module offsets for SM2 after iteration zero. Each
histogram point is a single module. This is before any alignment correction.

Figure 9: This shows the distribution of module offsets for SM2 after two iterations. Each
histogram point is a single module. This is also evidence that the alignment worked.

Figure 10: This shows the distribution of module offsets for SM2 after three iterations. Each
histogram point is a single module.

Figure 11: This shows the distribution of module offsets for SM2 after verification. Each
histogram point is a single module. This is evidence that the alignment worked.

Figure 12: This shows the distribution of module offsets for SM1 after iteration zero. The
histograms show misalignment versus plane and module position. This is before any alignment
correction has been made. The same information is shown in figure 4.

Figure 13: This shows the distribution of module offsets for SM1 after iteration one. The
histograms show misalignment versus plane and module position. This is after the alignment
correction has been made. The same information is shown in figure 5.

Figure 14: This shows the distribution of module offsets for SM1 after two iterations. The
histograms show misalignment versus plane and module position. The results look very similar to
the results shown in figure 11. The same information is shown in figure 6.

Figure 15: This shows the distribution of module offsets for SM1 after verification. The
histograms show misalignment versus plane and module position. This is before any alignment
correction has been made. The same information is shown in figure 7.

Figure 16: This shows the distribution of module offsets for SM1 after verification shown at
higher resolution. The histograms show misalignment versus plane and module position. This is
after the alignment correction has been made. The same information is shown in figure 8.

Figure 17: This shows the distribution of module offsets for SM2 after iteration zero. The
histograms show misalignment versus plane and module position. The results look very similar to
the results shown in figure 14. The same information is shown in figure 10.

Figure 18: This shows the distribution of module offsets for SM2 after iteration one. The
histograms show misalignment versus plane and module position. The results look very similar to
the results shown in figure 14. The same information is shown in figure 10.

Figure 19: This shows the distribution of module offsets for SM2 after iteration two. The
histograms show misalignment versus plane and module position. The results look very similar to
the results shown in figure 14. The same information is shown in figure 10.

Figure 20: This shows the distribution of module offsets for SM2 after verification. The
histograms show misalignment versus plane and module position. The results look very similar to
the results shown in figure 14. The same information is shown in figure 10.

Figure 21: This shows the distribution of module offsets for SM2 after verification shown at
higher resolution. The histograms show misalignment versus plane and module position. The
results look very similar to the results shown in figure 14. The same information is shown in
figure 10.

Figure 22: This shows the reduced c for all tracks. The mean position of the peak is improved2

after both the first and second iteration in both SM1 and SM2.

Figure 23: This shows the reduced c for short tracks (<= 20 tracklike planes). The mean position2

of the peak is improved after both the first and second iteration in both SM1 and SM2. The
distributions all seem to have a low mean value.

Figure 24: This shows the reduced c for long tracks. The mean position of the peak is improved2

after both the first and second iteration in both SM1 and SM2.

Figure 25: This shows the reduced (c -1) as a profile histogram plotting c versus number of2 2

tracklike planes. This only shows the tracks for ‘long events’ which have a reasonable
distribution compared to the short tracks. This shows that the c increases with increasing track2

length.

Figure 26: This shows the number of tracks used in the alignment that hit a particular module or
strip in SM1. The detector acceptance drops off at the edge of the detector because of geometry.

Figure 27: This shows the number of tracks used in the alignment that hit a particular module or
strip in SM2. The detector acceptance drops off at the edge of the detector because of geometry.

alignTrackerSM1.C
{

// This macro is derived from reco_R0.20.0_production.C

// Changed message levels to reduce output file size - DJB (1/29/04)

// Changed method for shower module to Config to avoid fatal run-time error

// in reconstruction - DJB (2/13/04)

// Added cut on FabPlnInstall to take out veto shield.- DJB (3/1/04)

//macro for generating alignment constants for the far detector

//Link dynamic libraries

gSystem->Load("libNoiseFilter");

gSystem->Load("libFilterDigitSR");

gSystem->Load("libBField");

gSystem->Load("libNumericalMethods");

gSystem->Load("libSwimmer");

gSystem->Load("libRecoBase");

gSystem->Load("libDeMux");

gSystem->Load("libCandStripSR");

gSystem->Load("libCandSliceSR");

gSystem->Load("libCandTrackSR");

gSystem->Load("libCandClusterSR");

gSystem->Load("libCandShowerSR");

gSystem->Load("libCandFitTrackSR");

gSystem->Load("libMCNtuple");

gSystem->Load("libMCNtupleModule");

gSystem->Load("libCandEventSR");

gSystem->Load("libAstroUtil");

gSystem->Load("libCandNtupleSR");

gSystem->Load("libCandNtupleSRModule");

gSystem->Load("libCandFitTrackSA");

JobC jc;

//Create path

jc.Path.Create("Reco",

 "NoiseFilterModule::Ana "

 "RecordSetupModule::Get "

 "DigitListModule::Get "

 "DigitListModule::Reco "

 "FilterDigitListModule::Reco "

 "DeMuxDigitListModule::Reco "

 "DeMuxCosmicsModule::Ana "

 "StripSRListModule::Reco "

 "SliceSRListModule::Reco "

 "ClusterSRListModule::Reco "

 "ShowerSRListModule::Config "

 "TrackSRListModule::Reco "

 "FitTrackSRListModule::Reco "

 "EventSRListModule::Reco "

 "RecordSetupModule::Reco "

 "Output::Put");

//Input Parameters

jc.Input.Set("Format=input");

jc.Input.Set("Streams=DaqSnarl");

// Rollback database

// DbiTableProxyRegistry is a CfgConfigurable

 DbiTableProxyRegistry& dbiCfg = DbiTableProxyRegistry::Instance();

// dbiCfg.Set("Rollback:UGLIDBISCINTPLN = '2004-07-19'");

 dbiCfg.Set("Rollback:UGLIDBISCINTMDL = '2004-10-13'");

// dbiCfg.Set("Rollback:UGLIDBISTRIP = '2004-07-19'");

 dbiCfg.Update();

//Set the output mode

jc.Path("Reco").Mod("Output").Cmd("DefineStream Config ConfigRecord");

jc.Path("Reco").Mod("Output").Set("Streams=DaqSnarl,Cand,Config");

//Set B=0 for SM2

BfldLoanPool* bfldpool = BfldLoanPool::Instance();

bfldpool->Set("NoFieldBeyondZ=0.0");

bfldpool->Update();

//Set Ugli to obey FabPlnInstall

//UgliLoanPool* uglipool = UgliLoanPool::Instance();

//uglipool->Set("CutAppliesToVetoShield=1");

//uglipool->Update();

// Get the AlgFactory

 AlgFactory &af = AlgFactory::GetInstance();

// AlgDeMuxDigitList AlgConfig parameters

 AlgHandle ah = af.GetAlgHandle("AlgDeMuxDigitList", "default");

 AlgConfig &acd = ah.GetAlgConfig();

 acd.UnLockValues();

 acd.Set("NormalizeWeights", 1); // Normalize weights to 1 if non-zero

 acd.Set("TrimHyps", 1); // Drop "0" weights if neg., or keep top N

 acd.LockValues();

//DigitListModule parameters

jc.Path("Reco").Mod("DigitListModule").Set("ListsToMake=1");

//Reco's filter parameters

jc.Path("Reco").Mod("StripSRListModule").Set("ListIn=canddigitlist");

jc.Path("Reco").Mod("FilterDigitListModule").Set("FilterDigitListAlgorithm=AlgFilterDigitListSR");

jc.Path("Reco").Mod("FilterDigitListModule").Set("SwitchPersToTemp=1");

jc.Path("Reco").Mod("StripSRListModule").Set("BegPlane=1");

jc.Path("Reco").Mod("StripSRListModule").Set("EndPlane=248");

// set the misalignment error in mm

jc.Path("Reco").Mod("EventSRListModule").Set("FilterEvent=1");

jc.Path("Reco").Mod("TrackSRListModule").Set("MisalignmentError=3.5");

jc.Path("Reco").Mod("FitTrackSRListModule").Set("MisalignmentError=3.5");

//Ntuple record has it's own output file so needs its own output module

jc.Path.Create("NtpSR","NtpSRModule::Reco "

 "Output::Put ");

jc.Path("NtpSR").Mod("Output").Cmd("DefineStream NtpSR NtpSRRecord");

jc.Path("NtpSR").Mod("Output").Set("Streams=NtpSR");

jc.Path("NtpSR").Mod("Output").Set("FileName=ntupleSR.root");

jc.Path.Attach("Reco","NtpSR");

// Ntuple abridged record

jc.Path.Create("NtpSRFilter","NtpSRFilterModule::Reco "

 "Output::Put ");

jc.Path("NtpSRFilter").Mod("Output").Cmd("DefineStream NtpSR NtpSRRecord");

jc.Path("NtpSRFilter").Mod("Output").Set("Streams=NtpSR");

jc.Path("NtpSRFilter").Mod("Output").Set("FileName=ntupleSR.sub.root");

jc.Path.Attach("Reco","NtpSRFilter");

//Configure the message service

jc.Msg.SetLevel("Plex","Error");

jc.Msg.SetLevel("FitTrackSR","Fatal");

jc.Msg.SetLevel ("Calibrator", "Fatal");

jc.Msg.SetLevel ("Bfld", "Fatal");

jc.Msg.SetLevel ("Ugli", "Fatal");

jc.Path("Reco").Run();

jc.Path("Reco").Report();

//Get Message Statistics

jc.Msg.Stats();

}

align1.C
/***

 * Macro Name: align.C *

 * Date: 8-13-03 *

 * Author: B. Viren (with large modification by B. Becker) *

 * Purpose: To align the MINOS FD using muons. *

 * E-Mail: bbecker@physics.umn.edu *

 * Use with minossoft R0.21.0 or later *

 *--- *

 * Command to run: *

 * > loon -bq 'align.C("output.root")' f1.cand.root *

 *--- *

 * output.root : Is the file which will have the aligned *

 * module positions (results of alignment) *

 *--- *

 * f1.cand.root : Is the candidate file which is generated *

 * by running align_tracker.C . After a first round of *

 * processing in which the output is used to generate a set *

 * of new tpos positions for the DB, align_tracker.C MUST *

 * BE RAN AGAIN and NEW f1.cand.root MUST BE MADE. *

 *--- *

 * Features: Multiple candidate files can be ran by adding *

 * them to command line: f1.cand.root f2.cand.root *

 *--- *

 * There are cuts applied on the candidates by using the *

 * NtpSR stream. These cuts and the files being read in are *

 * hard coded in the macro. *

 * *

 **/

class JobC;

JobC* align_init(const char* pathname,

 const char* histname);

void align (const char* histname)

{

 cout << "aligning with: " << histname << endl;

 const char* pathname = "Align";

 JobC* jc = align_init(pathname,histname);

 jc->Path(pathname).Run();

 delete jc;

 jc=0;

}

// Loads in the all the lib's needed for the job

// Make sure that this list of lib's matchs the list

// of libs used in align_tracker.C

JobC* align_init(const char* pathname,

 const char* histname)

{

 cerr << "Starting: " << histname << endl;

 const char* libs[80] = {

 "libAlignment.so",

 "libNoiseFilter.so",

 "libBField",

 "libNumericalMethods",

 "libSwimmer",

 "libDeMux",

 "libAltDeMux",

 "libAtNuReco",

 "libCandStripSR",

 "libCandSliceSR",

 "libCandTrackSR",

 "libCandClusterSR",

 "libCandShowerSR",

 "libCandFitTrackSR",

 "libCandEventSR",

 "libTimeCalibratorSR",

 "libAstroUtil",

 "libMCNtuple",

 "libMCNtupleModule",

 "libCandNtupleSR",

 "libCandNtupleSRModule",

 "libCandFitTrackSA",

 "libTruthHelperNtuple",

 "libTruthHelperNtupleModule",

 0

 };

 for (int i=0; libs[i]; ++i) {

 gSystem->Load(libs[i]);

 }

 // The following three lines do all the actual alignment

 // Rollback database

// DbiTableProxyRegistry is a CfgConfigurable

 DbiTableProxyRegistry& dbiCfg = DbiTableProxyRegistry::Instance();

// dbiCfg.Set("Rollback:UGLIDBISCINTPLN = '2004-07-19'");

 dbiCfg.Set("Rollback:UGLIDBISCINTMDL = '2004-10-21'");

// dbiCfg.Set("Rollback:UGLIDBISTRIP = '2004-07-19'");

 dbiCfg.Update();

 JobC* jc = new JobC;

 jc->Path.Create(pathname,

 "Alignment::Ana ");

 // The following code sets the NtpSR files to be read and set the cuts to be used.

jc->Input.Set("Streams=Cand,DaqSnarl,NtpSR");

jc->Input.Set("Format=input");

jc->Input.AddFile("/data/minos-pc3/bbecker/alignment_files/alignment_files/NewAlignmentRun/SM1/PassFour/n*.root","NtpSR");

jc->Input.Select("NtpSR","(evthdr.ntrack==1)&&(dmxstatus.ismultimuon==0)&&(trk.plane.ntrklike >= 20)&&(abs(trk.vtx.dcosx-trk.lin.dcosx) <=

0.0015)&&(abs(trk.vtx.dcosy-trk.lin.dcosy) <= 0.0015)&&(abs(trk.vtx.dcosz-trk.lin.dcosz)<= 0.0015)");

 // Error messages

 jc->Msg.SetLevel("BubJobC","Fatal");

 jc->Msg.SetLevel("BubCand","Fatal");

 jc->Msg.SetLevel("DMX","Fatal");

 jc->Msg.SetLevel("Ugli","Fatal");

 jc->Msg.SetLevel("Plex","Fatal");

 jc->Msg.SetLevel("Alignment","Fatal");

 jc->Msg.SetLevel("Calibrator","Fatal");

 jc->Msg.SetLevel("Dbi","Fatal");

 jc->Msg.SetLevel("SigCor Calibrator","Fatal");

 jc->Msg.SetLevel("Time Calibrator","Fatal");

 jc->Msg.SetLevel("MuonCalibrator","Fatal");

 jc->Msg.SetLevel("PE Calibrator","Fatal");

 jc->Msg.SetLevel("MapperCalibrator","Fatal");

 jc->Msg.SetLevel("NoiseFilter","Fatal");

 // Requires the use of the fit track. This is important as the "fit tracks" have a

 // higher quality (track fitter remove bad digits) then the "tracks"

 Registry ac = jc->Path(pathname).Mod("Alignment").DefaultConfig();

 ac.UnLockValues();

 ac.Set("TrackName","CandFitTrackSRList"); // Was CandTrackSRList

 ac.Set("TrackType","CandFitTrackListHandle"); // Was CandTrackListHandle

 ac.Set("HistFileName",histname);

 jc->Path(pathname).Mod("Alignment").Config(ac);

 return jc;

}

GetInfo.C
{

TFile *alignhist = TFile::Open("SM1/PassOne/SM1PassOneRollback.root");

Double_t Offset = 0;

TCanvas *T1 = new TCanvas("T1","U and V offsets 1");

T1->Divide(1,2);

TH1F *U1 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V1 = new TH1F("V","V",500,-0.025,0.025);

TCanvas *T2 = new TCanvas("T2","U and V offsets 2");

T2->Divide(1,2);

TH1F *U2 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V2 = new TH1F("V","V",500,-0.025,0.025);

TCanvas *T3 = new TCanvas("T3","U and V offsets 3");

T3->Divide(1,2);

TH1F *U3 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V3 = new TH1F("V","V",500,-0.025,0.205);

TCanvas *T4 = new TCanvas("T4","U and V offsets 4");

T4->Divide(1,2);

TH1F *U4 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V4 = new TH1F("V","V",500,-0.025,0.025);

TCanvas *T5 = new TCanvas("T5","U and V offsets 5");

T5->Divide(1,2);

TH1F *U5 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V5 = new TH1F("V","V",500,-0.025,0.025);

TCanvas *T6 = new TCanvas("T6","U and V offsets 6");

T6->Divide(1,2);

TH1F *U6 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V6 = new TH1F("V","V",500,-0.025,0.025);

TCanvas *T7 = new TCanvas("T7","U and V offsets 7");

T7->Divide(1,2);

TH1F *U7 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V7 = new TH1F("V","V",500,-0.025,0.025);

TCanvas *T8 = new TCanvas("T8","U and V offsets 8");

T8->Divide(1,2);

TH1F *U8 = new TH1F("U","U",500,-0.025,0.025);

TH1F *V8 = new TH1F("V","V",500,-0.025,0.025);

TCanvas *T9 = new TCanvas("T9","U and V offsets ");

T9->Divide(1,2);

TH1F *U = new TH1F("U","U",1000,-0.025,0.025);

TH1F *V = new TH1F("V","V",1000,-0.025,0.025);

for (Int_t i=2;i<=249;i=i+1)

{

 while(i%2==0)

 {

 for (Int_t j=1;j<=8;j++)

 {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U->Fill(Offset);

 if(j==1){

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U1->Fill(Offset);

 } else if(j==2) {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U2->Fill(Offset);

 } else if(j==3) {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U3->Fill(Offset);

 } else if(j==4) {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U4->Fill(Offset);

 } else if(j==5) {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U5->Fill(Offset);

 } else if(j==6) {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U6->Fill(Offset);

 }else if(j==7) {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U7->Fill(Offset);

 } else {

 Offset = ResidHistU00->GetBinContent(i,j)/NumberOfTracksU->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 U8->Fill(Offset);

 }

 }

 break;

 }

 while(i%2==1)

 {

 for (Int_t j=1;j<=8;j++)

 {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V->Fill(Offset);

 if(j==1){

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V1->Fill(Offset);

 } else if(j==2) {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V2->Fill(Offset);

 } else if(j==3) {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V3->Fill(Offset);

 } else if(j==4) {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V4->Fill(Offset);

 } else if(j==5) {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V5->Fill(Offset);

 } else if(j==6) {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V6->Fill(Offset);

 } else if(j==7) {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V7->Fill(Offset);

 } else {

 Offset = ResidHistV00->GetBinContent(i,j)/NumberOfTracksV->GetBinContent(i,j);

 cout << "Plane Number " << i-1 << " Module Number " << j << " Offset " << Offset << " m " <<"\n";

 V8->Fill(Offset);

 }

 }

 break;

 }

}

T1->cd(1);

gStyle->SetOptFit(1111);

T1->SetFillColor(1);

T1->SetFillStyle(3001);

U1->Draw();

U1->Fit("gaus");

U1->GetXaxis()->SetTitle("U_1 offsets in meters");

U1->SetFillColor(kBlue);

T1->cd(2);

V1->Draw();

V1->Fit("gaus");

V1->GetXaxis()->SetTitle("V_1 offsets in meters");

V1->SetFillColor(kRed);

T1->Print("UV1.ps");

T1->Print("UV1.jpeg");

T2->cd(1);

gStyle->SetOptFit(1111);

T2->SetFillColor(1);

T2->SetFillStyle(3001);

U2->Draw();

U2->Fit("gaus");

U2->GetXaxis()->SetTitle("U_2 offsets in meters");

U2->SetFillColor(kBlue);

T2->cd(2);

V2->Draw();

V2->Fit("gaus");

V2->GetXaxis()->SetTitle("V_2 offsets in meters");

V2->SetFillColor(kRed);

T2->Print("UV2.ps");

T2->Print("UV2.jpeg");

T3->cd(1);

gStyle->SetOptFit(1111);

T3->SetFillColor(1);

T3->SetFillStyle(3001);

U3->Draw();

U3->Fit("gaus");

U3->GetXaxis()->SetTitle("U_3 offsets in meters");

U3->SetFillColor(kBlue);

T3->cd(2);

V3->Draw();

V3->Fit("gaus");

V3->GetXaxis()->SetTitle("V_3 offsets in meters");

V3->SetFillColor(kRed);

T3->Print("UV3.ps");

T3->Print("UV3.jpeg");

T4->cd(1);

gStyle->SetOptFit(1111);

T4->SetFillColor(1);

T4->SetFillStyle(3001);

U4->Draw();

U4->Fit("gaus");

U4->GetXaxis()->SetTitle("U_4 offsets in meters");

U4->SetFillColor(kBlue);

T4->cd(2);

V4->Draw();

V4->Fit("gaus");

V4->GetXaxis()->SetTitle("V_4 offsets in meters");

V4->SetFillColor(kRed);

T4->Print("UV4.ps");

T4->Print("UV4.jpeg");

T5->cd(1);

gStyle->SetOptFit(1111);

T5->SetFillColor(1);

T5->SetFillStyle(3001);

U5->Draw();

U5->Fit("gaus");

U5->GetXaxis()->SetTitle("U_5 offsets in meters");

U5->SetFillColor(kBlue);

T5->cd(2);

V5->Draw();

V5->Fit("gaus");

V5->GetXaxis()->SetTitle("V_5 offsets in meters");

V5->SetFillColor(kRed);

T5->Print("UV5.ps");

T5->Print("UV5.jpeg");

T6->cd(1);

gStyle->SetOptFit(1111);

T6->SetFillColor(1);

T6->SetFillStyle(3001);

U6->Draw();

U6->Fit("gaus");

U6->GetXaxis()->SetTitle("U_6 offsets in meters");

U6->SetFillColor(kBlue);

T6->cd(2);

V6->Draw();

V6->Fit("gaus");

V6->GetXaxis()->SetTitle("V_6 offsets in meters");

V6->SetFillColor(kRed);

T6->Print("UV6.ps");

T6->Print("UV6.jpeg");

T7->cd(1);

gStyle->SetOptFit(1111);

T7->SetFillColor(1);

T7->SetFillStyle(3001);

U7->Draw();

U7->Fit("gaus");

U7->GetXaxis()->SetTitle("U_7 offsets in meters");

U7->SetFillColor(kBlue);

T7->cd(2);

V7->Draw();

V7->Fit("gaus");

V7->GetXaxis()->SetTitle("V_7 offsets in meters");

V7->SetFillColor(kRed);

T7->Print("UV7.ps");

T7->Print("UV7.jpeg");

T8->cd(1);

gStyle->SetOptFit(1111);

T8->SetFillColor(1);

T8->SetFillStyle(3001);

U8->Draw();

U8->Fit("gaus");

U8->GetXaxis()->SetTitle("U_8 offsets in meters");

U8->SetFillColor(kBlue);

T8->cd(2);

V8->Draw();

V8->Fit("gaus");

V8->GetXaxis()->SetTitle("V_8 offsets in meters");

V8->SetFillColor(kRed);

T8->Print("UV8.ps");

T8->Print("UV8.jpeg");

T9->cd(1);

gStyle->SetOptFit(1111);

T9->SetFillColor(1);

T9->SetFillStyle(3001);

U->Draw();

U->Fit("gaus");

U->GetXaxis()->SetTitle("U offsets in meters");

U->SetFillColor(kBlue);

T9->cd(2);

V->Draw();

V->Fit("gaus");

V->GetXaxis()->SetTitle("V offsets in meters");

V->SetFillColor(kRed);

T9->Print("UV.ps");

T9->Print("UV.jpeg");

}

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47

